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Abstract— For the best human-robot interaction experience,
the robot’s navigation policy should take into account personal
preferences of the user. In this paper, we present a learning
framework complemented by a perception pipeline to train a
depth vision-based, personalized navigation controller from user
demonstrations. Our perception pipeline enrolls a variational
autoencoder. It compresses the perceived depth images to a
latent state representation to enable efficient reasoning of the
learning agent about the robot’s environment. In a detailed
analysis and ablation study, we evaluate different configurations
of the perception pipeline. We discuss the robot’s navigation
performance in various virtual scenes and demonstrate the first
personalized robot navigation controller that solely relies on
depth images.

I. INTRODUCTION
The personalization of robots will be a key factor for

comfortable and satisfying human-robot-interactions. As the
integration of robots at home or at work will inevitably
increase, the number one goal should be a naturally collabo-
rative experience between users and the robot. However, users
might have personal preferences about specific aspects of the
robot’s behavior that define the personal golden standard of
interaction. Falling short of user’s preferences could lead to
negative experiences and consequently frustration [1].

Where humans share the same environment with a mobile
robot, the robot’s navigation behavior significantly influences
the comfort of interaction [2]. Consequently, basic obstacle
avoidance approaches are insufficient to address individual
preferences regarding proxemics, trajectory shape, or area
of navigation in a given environment, while being a key
component to successful navigation without question. Instead,
a robot’s navigation policy should be aware of humans [3]
and reflect the users’ personal preferences.

In our previous work [2], we demonstrated that pairing a
virtual reality (VR) interface with a reinforcement learning
(RL) framework enables the demonstration and training of
highly customizable navigation behaviors. Ina user study, the
presented personalized controller significantly outperformed
traditional, established local navigation approaches with
regards to comfort of user in the vicinity of the moving robot.
However, a key assumption of this work is the known pose of
static human and obstacles. To overcome these assumptions,
enrolling a 3D perceiving depth vision sensor to sense both
human and obstacles is a possible solution [4]. However,
depth vision cameras come at the cost of high-dimensional,
complex, and redundant output, from which it is challenging
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to learn [5]. The question crystallizes, how do we learn from
preferences of moving users in realistic 3D environments,
while relying on state-of-the art sensor modalities?

To solve the challenges above, we introduce a depth vision-
based perception pipeline that is both lightweight, human-
aware and, most importantly, provides the robot with a low-
dimensional representation of the 3D scene. This pipeline 1)
detects the human and obstacles, ii) compresses the perceived
depth information, and iii) enables efficient reasoning about
the robot’s dynamic environment to the learning framework.
Our new system is able to learn personalized navigation
preferences from VR demonstrations for dynamic scenes in
which both robot and human move.

The main contributions of our work are: 1) Learning a
preference-reflecting navigation controller that relies solely
on depth vision. 2) An qualitative and quantitative analysis
of different perception configurations. 3) An ablation study
to investigate the learned 3D scene understanding.

II. RELATED WORK

Adjusting or learning the navigation behavior of a robot
based on feedback or demonstration has been the focus
of various studies [6], [7]. Especially, deep learning-based
approaches shine by their ability to learn from subtle and
implicit features in their environment [8], [9], [10]. Fusing the
potential of user demonstrations with a learning architecture
led to promising results in the field of robotic manipulation
tasks [11] and has successfully been applied the field of robot
navigation for personalization [2].

Vision-based sensor modalities for navigation appeal due
to their cost-efficiency. For human-aware navigation, the
detection and explicit localization of pedestrians enabled
socially conforming navigation controllers [4], [12].

Recent advances in the field of depth vision-based naviga-
tion in combination with RL have been made by Hoeller et al.
[13], who study a latent state representation of depth-images
to efficiently learn navigation in dynamic environments. Our
proposed perception pipeline is built upon their successful
architecture.

While in our previous work [2] we presented one of the
first approaches at the intersection of navigation and robot
personalization, we now enhance the system by using only
depth vision as input.

III. OUR APPROACH

In this work, we consider a robot navigating in the same
room as a single, human user. The user has personal prefer-
ences about the way the robot circumnavigates him/her while
pursuing a local goal in the same room. Such preferences
could lie in the approaching behavior or the robot’s trajectory.
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Schematic of our architecture. a) Demonstration trajectories are drawn by the user in VR onto the floor using the handheld controller. b) Our TD3

RL architecture with an additional demonstration buffer and behavioral cloning (BC) loss on the actor trains a personalized navigation policy that outputs
linear and angular velocities. ¢) The robot-centric state space relies on a depth vision perception pipeline plus explicit relative human and goal position. A
variational autoencoder (VAE) compresses the raw images to a latent state representation.d) Visualization of the VAE with ground truth depth data before

encoding (top) and the decoder’s reconstruction (bottom).

We assume the robot to be provided a local goal from a
global planner. To achieve user-preferred and collision-free
navigation behavior, the robot relies on a depth vision camera
to sense human and obstacles. We formulate personalized
navigation as a learning task from VR demonstrations of the
user, where the robot learns a controller outputting linear and
angular velocity.

A. Reinforcement Learning Robot Navigation with Demon-

strations
The learning approach is a hybrid of reinforcement learning

and behavior cloning, see. Fig. la+b.

In short, we enroll an off-policy twin-delayed deep de-
terministic policy gradient (TD3) reinforcement learning
architecture with an additional behavioral cloning (BC) loss
on the actor, similar to Nair ef al. [11]. Furthermore, a separate
buffer for demonstration data is introduced.

The robot-centric state space consists of three main parts,
compare Fig. 1c: 1) The relative goal position (dg, Aag), 2)
the human position (dg, Aay) and presence kp € {0,1} in
the robot’s FOV, and 3) the latent representation of the depth
data. The human’s FOV-presence and position are obtained
from simulation directly. When no human is observed in the
FOV dj; = —1 m and Aaj; = 0 rad.

TD3’s continuous action space ensures smooth robot
control, as the actor network outputs forward and angular
velocity (v € [0,0.5],w € [—m, +7] rads™1).

The reward design features penalties for collision
(Tcoltision = _%Crew) and timeout (Tgmeout = _%)’ and
rewards goal reaching (repa = —|—c'2”), where ¢y = 10.
Special rewards apply for demonstration states, where the
goal reaching reward is increased tO0 7goa = —+Crw and
an additional +gy is added to each demonstration state
. The explicitly higher reward of the demonstration data to
boost the value of demonstration-like behavior for the critics
during learning. In short, a higher value of demonstration-
like behavior encourages user-preference-like navigation
whenever possible, while preventing the agent from taking
more efficient, shorter trajectories.

To teach and train our navigation controller in a realistic
environment for the Kobuki Turtlebot 2 robot, we use the
iGibson simulator [14] that provides a set of interactive
indoor scenes and a VR interface that we used for immersive

demonstration. iGibson renders the robot’s forward facing
depth-camera with a 87° horizontal FOV specified, which
serve as input to our perception pipeline during training.
Generally, our approach is applicable to other robots with
similar control modalities.

To collect preference-reflecting demonstration data, the
user demonstrates a trajectory for the robot by drawing it
onto the floor using the beam-emitting handheld controller,
see Fig. la. For this study, we recorded dynamic and static
navigation scenarios by ourselves. The dataset contains
nine scene configurations, with around three demonstration
trajectories each.

During training in the randomized iGibson scenes, start
and goal location of the robot are randomly sampled in the
same room, while ensuring a goal distance with 1.5 m <
dg < 6 m, equivalent to the depth sensing range.

To simulate the human, four different behaviors modes are
sampled: 1) Human walks in the opposite direction from the
robot’s goal to its start on an A* path. 2) Random human start
and goal location. 3) The Human is static. 4) No human in
scene. 5) Human moves according to recorded demonstrations.
For modes 142, the human speed is sampled from a standard
distribution A'(g = 0.5 ms~!, 0 = 0.3 ms™1!).

B. Representation Learning

Reinforcement learning on raw high-dimensional depth
vision data is unfeasible. Ideally, a dimensionality-reduced
state representation is used [13]. Thus, we compress the
depth data to a latent representation [ using a (3-variational
autoencoder (VAE) with six relu-activated convolutional
layers, see Fig. 1c-d. The dimensionality reduction is factor
320 from a 128 x 80 pixel depth image to a latent space of
dimensionality 32. To make the model robust against sensor
noise that a depth camera would exhibit, we apply a 5 %
dropout noise to the depth frames during VAE training. The
VAE learns to filter the noise, as the VAE’s reconstruction
loss is computed between the decoded and the noise-free
depth-frame. A visualization of the VAE’s performance is
depicted in Fig. le.

To train the autoencoder, we generated an extensive dataset
of depth-frames in the iGibson simulator [14] according to
the training environment, using a simple obstacle avoidance
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Fig. 2. The robot’s learned navigation behavior (blue lines) for scenes with
demonstrated preferences (orange line) (rows 1-3) and various controller
configurations (columns A-C) are depicted. The human (red) is either static
(red circle) or moving through the scene (red arrow). Goal (blue star) and
start location (black dot) are either taken from the demonstration or sampled
in the room. In short, the VAE-HA approach (A) exhibits navigation behavior
which is most reliable and closest to the demonstrated preferences.

controller trained with TD3 RL. During training of the RL

agent, the autoencoder model is frozen.
IV. EXPERIMENTAL EVALUATION
This section highlights the performance of our learned

preference-reflecting navigation controller under different
configurations. A qualitative analysis in Sec. IV-B discusses
the navigation behavior on for selected scenes. This is
followed by a quantitative analysis targeting the robustness
with success metrics in Sec. IV-C.

A. Perception Pipeline Configurations

We first evaluate different perception pipeline and learning
configurations against each other, compare Fig. 2.A-D and
Fig. 4.A-C. Their key differences lie in the state space as
input to the RL policy.

The standard human-aware VAE-HA (Fig. 2A) state
space configuration S-VAE contains the current latent depth
encoding, goal position, the human presence binary and
human position: sy EHA = (1, dg, Aag, ki, diy, Aat;).

The human-unaware VAE-HU (Fig. 2B) is the same
controller as the VAE-HA, but the human detection in the
robot’s field of view is disabled during evaluation.

The no-demonstration VAE-ND controller does not rely
on the learning architecture as shown in Fig. 1. It has neither
a demonstration buffer, nor a behavioral cloning loss, making
it a standard TD3 architecture. Therefore, it has learned its
navigation behavior without user demonstrations.

Our ablation study introduces two more configurations, see
Sec. IV-D: VAE-FOV-120 implements a widened FOV at
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Fig. 3. The performance of the different controllers is averaged over

all demonstration scenarios and other scenes. For each combination of
scene, human behavior modes, and demonstration preferences (if available),
50 trajectories were generated. "Random behavior” refers to behavior
modes 1-4, while ”demo behavior” refers to mode 5, both evaluated with
controller VAE-HA.

120° over the standard 87°, as it can be found on wide-angle
depth cameras such as the Microsoft Azure Kinect. VAE-NG
discards the goal distance d¢ from the state space.

B. Qualitative Navigation Analysis

Fig. 2 shows the learned navigation behavior of our
controller and highlights resulting differences between the
perception pipeline configurations introduced above.

In Fig. 2.1, the human is static and located at the couch.
The robot’s start location is randomized, while keeping the
goal at the end of the demonstration trajectory. As the
robot traverses the living room, it shall navigate on the
opposite side of the room close to the dining table and
along the cupboard. With VAE-HA, the robot learned to
navigate closely to the demonstrated preference. It exhibits a
similar, smooth, S-shaped curve while passing by the couch.
Interestingly, a pronounced difference in the robot’s trajectory
shape can be observed between VAE-HA and VAE-HU
(Fig. 2.A14+B1). As the human is not explicitly observed in
the state space, VAE-HU’s approaching behavior to the human
rather resembles shortest-path trajectories, while cutting short
on the demonstrated S-shaped curve. Note that the robot
trajectories are shaded in red in Fig. 2, whenever the human
is observed on the FOV.

In Fig. 2.2, the moving human encounters the robot with
an opposite direction of travel at the living room’s suite. As
a preference, the robot should take a wide turn of avoidance
around the armchair to make space for the approaching human.
Among all controllers except VAE-HA, the navigation of
the situation is challenging, leading to collisions around the
armchair’s corner.

As the human walks out of the room in Fig. 2.3, the
robot enters. When the robot detects the approaching human,
it shall take a left turn and make room for the human to
pass. Afterwards, the robot can continue traversing the living
room to its goal. In this scenario the effect of demonstration
trajectories strikes: The VAE-ND controller without access to
demonstrations mostly exhibits direct goal-oriented, straight-
path navigation.

Qualitatively, the VAE-HA configuration results in the best-
performing personalized robot navigation controller.
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Fig. 4. A) In our ablation study, we investigate (A1) the effect of increased
camera field of view with VAE-FOV-120, (A2) the removal of the goal
distance from the state space VAE-NG in comparison to the original approach
(Fig. 2.A3). Also, a differently moving human is implemented (A3). B) To
identify relevant environment features for the agent, the human (B1), the
furniture (B2), or both (B3) were removed from the scene, compared to the
original setup (Fig. 2.A2). For a legend, please refer to Fig. 2.

C. Quantitative Analysis: Robustness

Fig. 3 shows the performance of different controller
setups and human behavior modes (see Sec. III-A) in
terms of success, collision, and timeout. We determine
the demonstration-aware VAE architectures (VAE-HA, -HU,
-NG) most capable of avoiding collisions. The VAE-ND con-
troller without demonstration access perform worse than the
demonstration-based VAE architectures. Regarding different
human behavior sampling modes (Sec. III-A), as expected
the demonstration-related mode 5 perform best. Increasing
the RGB-D camera’s FOV (VAE-FOV-120), e.g., for better
perception of pedestrians approaching from the side, does not
lead to better collision avoidance. More observed collisions
than timeouts could be a consequence of the agent being
encouraged to drive by the BC loss from demonstration data.

D. Ablation Study

Finally, we perform an ablation study. Investigate effects of
an increased camera field of view (Fig. 4.A1), VAE-FOV-120
rather deteriorates the collision avoidance capabilities. This
is in line with the obtained overall performance results, see
Fig. 3. Removing the goal distance from the state space
(Fig. 4.A2) (VAE-NGQG) interestingly does not deteriorate
the performance, but also results in robust and preference-
reflecting navigation.

Demonstrating the ability for generalization, in Fig. 4.A3
we showcase a scenario where humans follows an A* path in
the opposite direction to the robot (compare behavior mode 1
in Sec. III-A). In most cases, the robot intuitively gives way
to the approaching human.

To learn which environment features the agent uses for
navigation and preference reproduction, we removed either
the human, furniture, or both from the scene, see Fig. 4.B. In-
terestingly, as no human approaches from behind the armchair
(Fig. 4.B1), the robot navigates closer to the chair with similar
trajectory shape. As all furniture is removed from the scene
(Fig. 4.B2), the robot either exhibits preference navigation or
a shorter path on the other side of the approaching human.
With everything removed (Fig. 4.B3), the small deviation
around the human collapses to a shortest path. But still the
robot is able to reflect preferences. We attribute this behavior
to the perception of walls and room layout that are still
observable for the robot, or a learned guidance by relative
goal position in the state space.

V. CONCLUSION

To summarize, we presented a learning approach to
personalized navigation based on depth vision. A VAE
compresses the perceived 3D scene to an efficient latent
representation used as input by the learning framework. As
demonstrated with our results, we successfully learned a
personalized navigation controller that reflects user prefer-
ences from few VR demonstrations in dynamic human-robot
navigation scenarios. We furthermore find the inclusion of
demonstrations to improve the overall navigation performance
in terms of success rate. In conclusion, our research has
demonstrated the feasibility of personalized robot navigation
utilizing depth vision sensors and presents a promising avenue
for the development of more user-oriented robot controllers.
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